Toán 12 Tìm tất cả giá trị của m sao cho đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} + 3mx + 1} }}{{x + 2}}\)

Học Lớp

Administrator
Thành viên BQT
Đạo Hàm Và ứng Dụng|Khảo Sát Sự Biến Thiên Và Vẽ đồ Thị Hàm Số|Tiệm Cận|
Tìm tất cả giá trị của m sao cho đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} + 3mx + 1} }}{{x + 2}}\) có ba tiệm cận gồm các tiệm cận đứng và tiệm cận ngang.
A. \(0 < m < \frac{1}{2}\)
B. \(0 < m \le \frac{1}{2}\)
C. \(m \le 0\)
D. \(m \geq \frac{1}{2}\)
 

Học Lớp

Administrator
Thành viên BQT
Học lớp hướng dẫn giải
Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {m{x^2} + 3mx + 1} }}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {m + \frac{{3m}}{x} + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}} = \sqrt m\)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {m{x^2} + 3mx + 1} }}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {m + \frac{{3m}}{x} + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}} = - \sqrt m .\)
Đồ thị hàm số có hai tiệm cận ngang khi m>0
Khi \(x=-2\Rightarrow \sqrt {m{x^2} + 3mx + 1} = \sqrt {1 - 2m}\)
Với \(m < \frac{1}{2} \Rightarrow \sqrt {1 - 2m} > 0\) thì đồ thị hàm số sẽ có tiệm đứng là x=-2
Với \(m = \frac{1}{2} \Rightarrow \sqrt {1 - 2m} = 0\) ta phải thử với trường hợp \(m=\frac{1}{2}\)
\(m = \frac{1}{2} \Rightarrow y = \frac{{\sqrt {\frac{1}{2}{x^2} + \frac{3}{2}x + 1} }}{{x + 2}} = \frac{{\frac{1}{{\sqrt 2 }}\sqrt {\left( {x + 1} \right)\left( {x + 2} \right)} }}{{x + 2}}.\)
Lúc đó ta chỉ được xét giới hạn khi \(x \to - {2^ - }\)
\(\Rightarrow \mathop {\lim }\limits_{x \to - {2^ - }} y = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{1}{{\sqrt 2 }}\frac{{\sqrt {(x + 1)(x + 2)} }}{{x + 2}}\)
\(= \frac{1}{{\sqrt 2 }}\mathop {\lim }\limits_{x \to - {2^ - }} \left( { - \sqrt {\frac{{x + 1}}{{x + 2}}} } \right) = - \infty\)
Từ đó với \(m=\frac{1}{2}\) thì đồ thị hàm số có tiệm cận đứng \(x=-2\)
Do đó đồ thị hàm số có ba tiện cận khi \(0 < m \le \frac{1}{2}\).